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From the generalized Ohm’s law, with certain assumptions concerning the 

nature of the problems under consideration, we obtain a vector equation 

describing the change in magnetic field, independent of the equations of 

mechanics. If the parametkrs of the problem are assumed to be independent 

of one of the coordinates, then this equation reduces to a system of two 

scalar equations. The properties of certain particular solutions of this 

system are described. For the case of small currents and large external 

magnetic fields, when to the first approximation the induced fields may 

be neglected, the solution of the resulting system can be found in the 

form of a series in the small parameter A = 4 TI I/cH, (I is the total 

current flowing in the system, Ho is the external field). As an example 

we consider the protilem of the effect of anisotropic conductivity on the 

flow of- gas in a channel with crossed electric and magnetic fields. 

1. Yie shall consider the flow of a rarefied ionized gas in a strong 

external magnetic field, and we shall assume that the parameter 

(o is the Larmor frequency of electrons, T is the time between collisions 

of electrons). Under these conditions the equation expressing the 

generalized Ohm's law has the form 

(1.1) 

Media in which OT-:\ 1 are known as media with anisotropic conduc- 

tivity. 
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To specify the motion of the gas and the laws of current flow we have 

to supplement Equation (1.1) with the equations of mechanics and 

Maxwell's equations. 

If the degree of ionization is slight, so that the number of neutral 

particles na considerably exceeds the number of charged particles n, 

i.e. na >> n, then the term involving the gradient of electron pressure 

in Equation (1.1) may be neglected. 

In a number of problems connected with the motion of a conducting gas 

in an electromagnetic field, the magnetic Reynolds' number RII is small 

on account of the low conductivity of the medium and the small velocities 

of motion. If at the same time strong electric currents are created in 

the gas by external sources, so that the following relation holds: 

(I is the total current in the system), then the induced currents may be 

neglected (j >> a&/c). Sudh conditions obtain, for example, in problems 

concerning the setting in motion of a conducting gas in a channel by ex- 

ternal crossed electric and magnetic fields. In the initial stage of the 

motion, when the velocity of the gas is still far from the limiting velo- 

city u* - cE/Il, the electric currents in the system are caused by the 

external potential difference, whilst the external electrical field is 

many times greater than the induction field (E >> u/f/c) and the relation 

(1.2) is valid when Rm << 1. 

From now on it will be assumed that the inequalities (1.2) and na>>n 

are valid. Then the generalized Ohm's law takes the form 

(I .3) 

It is obvious that under the specified assumptions Equation ('1.3) and 

Maxwell's equations, determining the change in the electromagnetic field 

and the current field, do not depend on the equations of mechanics. 

Using this system to find the distribution of fields and currents, we 

can calculate the force acting on the gas and the energy supplied by the 

electromagnetic field, after which we can solve the mechanical problem 

of the motion of the gas in the specified field of force and with the 

specified supply of energy. 

’ We note that Equation (1.3) is exact if we consider the problem of 

determining the current field in a fixed conductor possessing anisotropic 

conductivity. 

Applying the operator rot (curl) to Equation (1.3) and making use of 
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Maxwell's equations, we obtain the following equation, which describes 

the changes-in the magnetic field: 

,‘iH - u t(Hv) rot H - (rot H 7,:) HI = $- 
:n 

In these manipulations we have made use of the fact that 

o = corm, a E $- -- const 

dH 

--Jr 
(1 A) 

(1.5) 

Equation (1.4) is analogous to the equation of induction in magneto- 

hydrodynamics. Yith the boundary and initial conditions, respectively, 

formulated for If, Equation (1.4) together with the condition div ff = 0 

determines the distribution of magnetic field. Knowing the solution of 

Equation (1.4j, from Maxwell's equations and Ohm's law (1.3) we can find 

the distribution of all the electromagnetic quantities. 

2. We shall consider problems which are stationary from 

dynamic point of view. Then Fqtiation (1.4) takes the form 

the electro- 

AH - a[(~KY) rot H - (rot HC) HI = 0 (2.1) 

Having in view the application of our results to problems connected 

with the flow of gas in pipes and channels under the action of an ex- 

ternal electromagnetic field, we shall seek solutions of Equation (2.1) 

which do not depend on the coordinate n. Moreover it will be assumed that 

the boundary conditions do not depend upon n. Under these assumptions it 

follows from Maxwell's equations that the projections of Equation (2.1) 

on the axes of y and z are equivalent to the relatiun Ex = const. The 
value of the constant Ez is connected (when all quantities are inde- 
pendent of x) with the conditions at infinity or at the outlet of the 

channel. 

To obtain the system of equations which describes the distribution of 

magnetic field in this case, we can make use of the projection of Equa- 

tion (1.3) on the axis of x, the projection of Equation (2.1) on the axis 

of x, and the equation div I# = 0. lhis system will have the form 

For the sake of simplicity in what follows we shall assume that 



i.e. that no accumulation of electric charge occurs at infinity alon? 

the axis of x. For circulatory flows of gas of the type of flow with 

homopolarity the condition ( 2.3) is automatically fulfilled, 

Let us introduce the function O(yz) by the formulas 

(2.4, 

The last of Equations (2.2) is then satisfied identically, whilst the 

first two reduce to the system 

(2.5) 

If we consider the flow of gas along a channel, then the system (2.5) 

has to be solved with boundary conditions given in the yz plane on the 

contour of the channel. "Joreover, on a part of the contour representing 

an insulator, the normal component of the current density must vanish, 

i.e. 

On a part of the contour representing an 

on the other hand, the tangential component 

vanish, i.e. 

on insulators (2.6) 

ideal conductor (electrode), 

of the electric field must 

IIere s is the coordinate along the contour of the channel, n is the 
exterior normal to the contour. The magnetic field in the channel is de- 

termined both by the external sources and also by the currents flowing 

in the gas. Generally speaking, therefore, the magnetic field exterior 

to the channel cannot be specified arbitrarily. In the general case on 

the boundary of the channel we must fulfil the condition of continuity 

of the normal component of the magnetic field, i.e. 

/ J!J () on the contour S (2.X) 

and also the condition connecting the discontinuity in the tangential 

component of the magnetic field with the surface current flowing in the 

walls of the channel, i.e. 



Problems in magnetohydrodynamics 

[Hx-1 = is on the contour 

793 

S @.!I) 

Here the symbol [ I d enotes the difference between the values on the 

interior and exterior faces of the channel wall, i is the density of the 

surface current. we note that outside the channel the magnetic field 

satisfies the usual system of Maxwell’s equations. 

Besides the conditions (2.6) to (2.9), in the solution of actual prob- 

lems there may arise certain supplementary conditions, establishing, for 

example, a connection between the constants in (2.6), or certain condi- 

tions of flow synvnetry. These conditions, connected with the method of 

supplying current to the system and the conditions for closing the current 

flowing along the axis of x at infinity, need to be formulated for each 

actual problem (certain examples of such conditions are to be seen in 

(4.6) and (4.15)). 

Hence, to determine the magnetic field, and consequently also the 

current field in the channel, we need to solve the system of Equations 

(2.5) with the boundary conditions (2.6) to (2.9). 

3. The system (2.5) is somewhat complex. Certain particular solutions 

of this system are of interest. Let us indicate the properties of the 

simplest particular solutions of the system (2.5). 

Let us consider the solutions of the system (3.5) which possess the 

property that 

H, = h@,, k = const (3.1) 

Under this condition the functions 0 and Hz satisfy Laplace’s equation: 

From conditions (2.6) to (2.7) it follows that in this case the func- 

tion Q, is subject to the following boundary conditions: 

(1) = cnnSl 
dcT) 

(on insulators), - = - akcD g 811 (on conductors) 

The solutions considered correspond to the case of the absence of 

currents and components of electromagnetic force in the direction of the 

x-axis: 
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In the plane perpendicular to the axis of x, currents flow along the 

magnetic field 

Qe note that the solution of system (3.5) reduces to the solution of 

taplace's equation for all the particular solutions satisfying the rela- 

tions Hz = f(Q), where f is an arbitrary function. 

Another class of particular solutions, for which the solutions of 

system (2.5) satisfy simpler equations, are solutions possessing the pro- 

perty that 

A@ = ICH,, k = const (3.2; 

Here to determine HX we have the equation 

AHx + k2Hx = 0 (3.3) 

Equations (3.21 and (3.3) are connected by the boundary conditions 

(2.61 to (2.9). In certain particular cases, for example, with :Jn s = 0 

the boundary conditions for CD and llX are formulated independently. 1Iere 

it is necessary first of all to solve Equation (3.3), and then with the 

known function HX to solve Equation (3.2) for the function @,. 

7he solutions considered possess the property that the current density 

and the electromagnetic intensity in the direction of the x-axis are pro- 

portional to the intensity of the magnetic field in that direction: 

F jX z:: -r\a> =: -lkH,,. j,Y z-z "- II,,. (3.G 

Particular solutions of the types (3.1) and (3.2) can describe the 

solution of the problem of a discharge current with electrodes under con- 

ditions when there exists anisotropic conductivity. 

Suppose, for example, that we have an infinite plane electrode occupy- 

ing the plane y = 0. Suppose that the magnetic field outside the electrode 

is directed along the axis of z and that there is no surface current in 

the electrode. Suppose, moreover, that the nortnal component of current 

density at the electrode is a constant. Condition (2.7) and the stipu- 

lated assumptions lead to the following boundary conditions for Equations 

(3.2) to (3.3): 
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Solutions of Equation (3.3) under conditions (3.5) and Equation (3.2) 

with the condition (3.6) have the form 

H, =y I ( cos ky -$-sin ky) (z -j- C), c = const 

(t) y= -$ (F Sir1 ATy - COS ky) (z -I- C) + + 2 + H,, H, = H (0, - C) 
6 

(3.7, 

'Ihe constant C is related to the choice of the origin of coordinates. 

The solution (3.7) corresponds to the case 

yt ,[ when the external magnetic field at the 

% 

electrode varies along the electrode accord- 
-U ing to the law 

t ,I-------- 

/ ,y' ' I H,(O, z) =: - g = - F(z -I- C)+ Ho (3.8) 

:d Vie can pose the question of the solution 

Fig. 1. 
of the problem of the discharge current with 

a plane electrode in a situation similar to 

the foregoing, but with a homogeneous ex- 

ternal magnetic field directed along the axis of z(HZ = ZO when y = 0). 

The solution of this problem will not be included amongst the solutions 

of types (3.1) or (3.3), but it can be constructed in the following form: 

In the solutions (3.7), (3.8) and (3.9) the current density j 

vanishes for a certain value of y = y*. Accordingly, these solutions can 

be regarded as solutions of the problem of a discharge current with a 

plane electrode in a space bounded by a plane insulator. 'Ihe second 

electrode must then be regarded as located at infinity. 

4. Let us consider the problem of the effect of anisotropic conduc- 

tivity on the flow of gas in a channel (Fig. 1) of rectangular shape, 

where two walls of the rectangle are electrodes, which are kept at a con- 

stant potential difference, and the other two walls are dielectrics. 'Ihe 

external magnetic field is given in the yz plane (Nzo = 0). The inter- 

action of the currents flowing in the channel, on account of the external 

difference of potential, with the magnetic field, consisting of the sum 

of the external field and the field of the currents, leads to the crea- 

tion of a force directed along the channel. Acceleration of the gas in 
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the channel arises as a result of this force, and also on account of the 

Joule heating by the flow of current in the gas. 

In order to determine the electromagnetic force acting on the gas, and 

to establish in w!lat manner the presence of anisotropic conductivity 

modifies this force, let us determine the magnetic field and the field of 

the currents in the channel. 

We shall assume that all the conditions formulated in cSections l-2 are 

fulfilled. Then the solution of the problem of determining the field of 

the currents reduces to the solution of the system (2.5) with the bound- 

ary conditions (2.6) to (2.9), gS' i\ren in the appropriate form as the sides 

of the rectangle which represents the cross-section of the channel by 

the yz plane. We have not succeeded in obtaining the solution of this 

problem in general 'form, but with certain supplementary assumptions such 

a solution can be constructed approximately. 

We shall assume that the currents flowing in the channel are relativ- 

ely small, so that in the‘first approximation we can neglect the change 

in the magnetic field on account of these currents and can assume the 

magnetic field to be given. 'ihis assumption is equivalent to assuming 

that the parameter A, introduced in (1.2), is a small quantity, i.e. the 

following relation holds: 

(4.1) 

If the inequality (4.1) is satisfied, then the solution of system 

(2.5) may be sought in the form of a power series in the parameter h (if 

(4.1) is not satisfied, then we can develop a method of successive 

approximations for the solution of the problem, and it is obvious that 

the first approximations in the method of successive approximations and 

in the series development will coincide). In what follows we shall assume 

that (4.1) is valid. Then it is evident that at each approximation we 

shall obtain from the system (2.5) equations with known coefficients for 

the determination of the functions Hz and A@. 

For the sake of definiteness we shall assume that the external mag- 

netic field 11' is homogeneous and parallel to the axis of z(MO= Hok). 
Let us introduce dimensionless variables by the formulas 

H - //,,li’, :i= l/l/'. 2 L I)? 

llere 9 is the potential of the electric field (!? = grad cp), b is the 
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length of the side of the rectangle, representing the 

electromagnetic force. Omitting henceforth the primes 
.--.. 

electrode, j is the 

from the dimension- 

less quantities, we can rewrite the system (2.5) in the dimensionless 

variables 

(4.3) 

The boundary conditions (2.6) and (2.7) for the given problem in the 

dimensionless variables (4.2) take the form 

The constants in (4.4) are determined by the total current flowing 

through the system. If the current supply to the system is realized 

according to the scheme depitcted in Fig. 2, then in place of (4.4) we 
have to use the relations 

Hz (y, - $) = - H, iy, $, 

H&J, -$)-H,(y, $,----I (4.6) 

Fig. 2. !Iere I is the total current flowing 

through the system (I > 0 if the 

current flows in the positive direction of the axis of y, and I < 0 if it 

flows in the opposite direction). If there are no surface currents along 

the axis of x in the electrodes, then conditions (2.5) and (2.9) reduce 

to the conditions for continuity of the magnetic field at the dielectrics 

and continuity of the y- and z-components of the magnetic field at the 

electrodes, i.e. 

We shall seek a solution of the system (5.3) with the boundary condi- 

tions (4.5) to (4.6) in the form of the following series in powers of the 

parameter h : 

‘~.,, = hH,l _1- . . ., (D -1 _ y _I_ h(I,, . . . (4.8’1 
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Also for determining the other quantities we obtain series, in the 

following forms: 

(4.9) 

H,=i+AH,,+..., Hu = AH,, + . . ., j~=hj~,+... etc. 

Substituting the series (4.8) in the system (4.3) and the boundary 

conditions (4.5) to (4.6) and retaining only terms of the first order in 

1, we obtain a system for the determination of the first approximation 

H,, (y, -$, = -H,, (y, a,, H,, (y,-$: - Hx, (y,+-) = - 1, = 3 imdz 
- -‘iz 

It is easily seen here that the function 

H,, = 1,~ (4.10) 

satisfies this system of equations and boundary conditions. In the first 

approximation, then, the current density parallel to the axis of x is 

constant with respect to the cross-section of the channel 

(4.11) 

The current densities along the axes of y and z and the force intens- 

ity in the x direction in this approximation are respectively given by 

(4.12) 

For the determination of the function 0, in the whole of space we ob- 

tain 

no,=fI, il = { 
@~II inside the channel 
0 outside the channel 

(4.13) 

while the boundary conditions (4.7) reduce to the condition of continu- 

ity of 9, at the boundary of the channel. Equation (4.13) is Poisson's 

equation and its solution is easily written down. We note that the dis- 

tribution of the magnetic field (NY,, Htl) in the given case can be ob- 

tained, without solving Equation (4.13), from the IXot-Savart formula 

for the given distribution of current density jxl. If the channel is a 

very elongated rectangle, then the currents in the direction of the 



x-axis in the channel can be regarded as a current sheet. In these cases 
the expressions for a1 and the component of magnetic field take the 
simple forms 

(4.14) 

In obtaining the Expressions (4.14) we have made use of the condition 
of symmetry of the closure of the currents j, at infinity, i.e. it is 
assumed that at infinity there exists a scheme for closing these currents 
similar to the scheme in Fig. 1 for the imposed currents. These condi- 
tions can be formulated in the following manner: 

Hz, (0, 2) = -Hz, (V, 2) 

H,, (0, 2) =---N,l(8/&, z)= - + jx = $ ml, when s< b (4.25) 

Making use of (4. IO), (4.13) and (4.1#), we obtain from (4.3), (4,s) 
and (4.6) a system of equations and boundaxy conditions to determine the 
second approximation in the case 6 << b. This system is as follows: 

Accordingly, for the second approximation for the calculation of Hz 
we obtain a mixed problem for Laplace’s equation, whilst the function CD, 
is again determined from Poisson’s equation. Ihe solutions of the system 
(4.16) supply a correction to the current distribution (4-D), (4.X2) 
with respect to the cross-section of the channel. It is obvious that 
taking account of the second approximation jz $ 0 and j, # const, i.e. 
allowance for the second approximation shows that the force intensity in 
the direction of the axis of x is not uniformly distributed across the 
section of the channel. 

It is easy to see that the function H,,(y, z) satisfying (4.16) has 
the form 
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Leaving aside the study of the second approximation, let us consider 

the dependence of the total current flowing in the cross-section of the 

channel from the application to the electrodes of the potential differ- 

ence. Valting use of the projection of Equation (1.3) on the axis of y 

(in the dimensionless variables (st.2)) 

(4.17) 

Using the solution (4.10) to ($.12) in the first approximation, we 

find that 

‘PI (!A = 91 (y) = rp (0) + 11 + (d”l I,!/ (4.18) 

or, that the total current flowing in the cross-section of the channel 

is related to the potential difference applied to the electrodes by the 

equation 

In dimensional variables the Equation (!..19) takes the form 

'Ne note that in the expression of jY, in terms of the potential 

difference we have used the complete difference of the potentials, i.e. 

in the calculation of the first approximation for the potential we have 

used for boundary conditions the true values of the potentials at the 

electrodes. Such an approach makes it possible in any approximation to 

obtain the connection relating the current t!ensity at the electrodes, 

and consequently the total current, to the applied potential difference. 

It is natural,, in the calculation of successive approximations for the 

potential (q2, T3, . . . ), that the boundary values for these functions he 
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taken equal to zero (~~(0, t) = 0, v2(E/b, z) = 0 and so on). 

'lhe Expression (4.20) shows that in the first approximation for the 

calculation of current density in the given problem we can make use of 

the usual Ohm's law, but with a modified value for the conductivity: 

5 

Q + Ii_ (cat)2 

It appears that it is possible to establish how the total current in 

the system for a given potential difference at the electrodes changes if 

we take account of the second approximation. This question can be 

answered without solving the system \(4.16). In fact, in the second 

approximation Equation (4.17) gives 

(4.21) 

Substituting in this equation for jZl from (4.11), for Hz1 from (4.14) 

and for jX, = - A@, from (4.16), we obtain 

(4.22) 

Integrating this equation with respect to y from zero to 6/b and 

making use of the boundary conditions for q,(q,(O, Z) = 9,(6/b, Z) = 0), 

we find that 

Consequently 

Accordingly, under the specified assumptions (see 

(4.15)), the relation between the total current flow- 

ing in the cross-section of the channel and the 

applied potential difference is given to two approximati 

Fig. 3. 

ons by (4.19). 

Ys'e emphasize that the result obtained concerning the current density 

is related in essential fashion to the assumption (1.15) concerning the 

symmetry of the closure of currents flowing in the direction of the x- 

axis. Let us illustrate how tile solution changes, if in place of (1.15) 

we take other conditions. Sul)pose that instead of (,:.1.5) the following 

conditions hold: 
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Such conditions occur if we consider the problem of the flow of gas 
between two cylinders to which a potential difference is applied (a homo- 

polar, Fig. 3). If the radii of the cylinders are sufficiently large and 
differ little enough between themselves, then the flow in the space 
(neglecting centrifugal effects) can be regarded as flow in a channel. 
For the system of two cylinders it is natural to assume that the magnetic 
field outside the outer cylinder is given as HZ,. Accordingly for the 
corresponding flow in the channel it is necessary to take the conditions 
(4.24). The flow in the channel will then not be synnnetrical with respect 
to the plane y = S/2. Instead of (4.14)) we shall for this case obtain 

Corresponding to ( 4.23) we obtain 

(4.25) 

(4.26) 

Accordingly, in this case taking account of the second approximation 
shows that the total current flowing in the cross-section of the channel 
turns out to be less than the value given by Formula (4.19). It is 
obvious that the mean electromagnetic force acting on the gas also turns 
out to be less than its value calculated according to the first approxi- 
mation. 

5. Let us consider the problem of the flow of gas in a cylindrical 
channel of arbitrary shape in the plane perpendicular to the axis of x, 
where the external magnetic field will be assumed homogeneous and 
specified in the plane yz(Hxo = 0). If we limit ourselves to solution of 
the problem in the first approximation, then the solution reduces to the 
successive solution of the following equations, arising from the system 
(4.3) : 

~W,,+(oz)~ Hv2 T -+ 2H,II,$+H,Z-& =0 
c 

a2Hx1 d2H 

3 

(5*1) 

Choosing a system of coordinates so that the axis of z is directed 
along the magnetic field, and taking the magnitude of the magnetic field 
intensity as the characteristic quantity in (4.2), we reduce (5.1) to 
the form 

(5.2) 

Tr~sforlnation of the coordinates according to the formulas 
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z’ = vi ;(m)2 ’ Y' = Y (5.3) 

reduces the first Equation 

‘Ihe boundary conditions 

(5.2) to Laplace’s equation 

A'H,, = 0 (5.4) 

(2.6) to (2.7) for the first Equation (5.2) 
in the variables of (4.2) have the form (!f, = cos (nz), Hs = COS (nY)) 

[l + (oq2 Hn2] an = -(m)'HnHs$ on electrodes (5.5) 
aHxl 

H,. = const on insulators 

Accordingly, solution of the problem reduces to solution of Laplace’s 

equation (5.4) for the boundary conditions (5.5), written in variables 
, 

YIZ ' on the contour in which the boundary of the channel cuts the 

(y’, z’) planes. 

Let us now take the projections of the equation representing Ohm’s 

law (1.3) upon the axes of a coordinate system in which H, = 0. In the 

first approximation these will have the form 

Hence it follows that the potential of the electric field is given in 

the first approximation by the equation 

Accordingly the density of the space charge in 

mined to the first approximation by the relation 

(COT)2 a2ff,1 
Pe1 = T$y- 

-__ 
ay a2 

(5.71 

such flows is deter- 

(5.8) 

We note that, in the case of the rectangular channel considered in 

Section 4, the density of space charge is zero to the first approxima- 

tion. 

In order to obtain the expression for the potential satisfying the 

boundary conditions it is not necessary to integrate Equation (5.7), for 

we can make direct use of Equations (5.6). Integrating the second Equa- 

tion (5.6) with respect to y, we obtain 

cpl = (1 + (wq21 \ % dy + f (2) 
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To determine f(z), let us substitute this expression in the third 

Equation (5.6) and make use of the first Equation (5.2) 

2 = [I + (wc)2] \ aff dy + j' (2) = - \ aE$ dy + j' (2) = 

aHxl aHxl = - ay -c c, + j' (2) = - -q- 

Hence it follows that f(z) = C,z t C,. Accordingly we have the follow- 

ing expression for the potential: 

(PI = [ 1 + (6x)2] \ a+ dy -}- c,z + c, = - \ dz$ dz + Gy f C, . 

‘Ihe foregoing a&ments enable us to obtain rather simply the solution 

in the first approximation for flow in channels of arbitrary shape. 

6. For a rather more complicated example of flow in a channel than 

that of Section 4, let us consider the problem of flow in a channel of 

rectangular section, when the current is 

supplied to the system through “point 

electrodes” (Fig. 4) located at the points 

z = 0, y = f 6. The external magnetic field 

will be assumed to be uniform and parallel 

to the z-axis. ‘Ihe problem in this case re- 

duces to the first equation (5.2) for the 

function I!,, . If we assume that the supply 

of current is symmetric, then the condi- Fig. 4. 

tions (5.5) reduce to conditions of con- 

stant H,, on each of the halves of the rectangle separated by the 

electrodes, thus 

I/,, ( ABCD) r= - H,, ( A’WC’D’), El,, (ABCD) -H,, (.4'fi'C'D') = - I, 

The solution of the. first Equation (5.2 ) under these conditions has 

the form 

(Here we have taken n as the cl1aracteristi.c linear dimension (see 

(4.2)) .) Differentiating Equation (6.1) and making use of t:,e formulas 
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we can map the distribution of currents and force intensities with re- 

spect to the channel section. ?he distribution of potential is given by 

the formula 

‘PI = (1 + (OT)?] I, y + A- * $ sinlh_ my 1/l -+-(cIx)~ 
-- 

n 1/l +(o~)~ ,$ coah(nn8vi+(oT)2/a) 
CT} (6.2) 

We note that in the given case there arises in the channel a space 

distribution of charge which is non-zero even in the calculation to the 

first approximation. ‘Ihe distribution of space charge across the section 

is easily obtained by making use of Formulas (5.8) and (6.1). 

Translated by A.H.A. 


